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ABSTRACT 
It is proved that the existence of supercompact cardinal is equivalent to a 
certain Skolem-L6wenheim Theorem for second order logic, whereas the 
existence of extendible cardinal is equivalent to a certain compactness theorem 
for that logic. It is also proved that a certain axiom schema related to model 
theory implies the existence of many extendible cardinals. 

We assume tha t  the reader is familiar  with the not ions  o f  a supercompact  and 

a f l-supercompact cardinal  and a normal  ultrafilter over Pk(fl) (n.u.f.), defined in 

[4] (see also [2]), as well as with the usual nota t ion  o f  Set Theory.  

THEOREM 1. There exists a supercompact cardinal i f f  there is a it o such 

that for all R(fl), fl > lio there is an ~ < fl such that (R(oO, e) can be elementarily 

embedded in (R(fl), e). 

The least such / lo  is the first supercompact  cardinal.  

We begin the p r o o f  o f  the Theorem by a series o f  Lemmata .  

LEMMA 1. Let fl > 7  > to; let ~c be ~-supercompact for all c~ < 7 and let 7 

be fl-supercompact; then lc is fl-supercompact. 

PROOF. We form the ul t rapower  Ve~(a~/U where U is a normal  ultrafilter 

over Pr(fl). Let M,, be the transitive i somorph  of  VV~(a)/U and let * be the canonical  

elementary embedding o f  V into M u. I t  is well known (see [4], and [2]) tha t  

any set which is hereditarily o f  cardinali ty < [ Pr(fl) l is a member  of  Mu, as well 

as any subset o f  M~ of  cardinal i ty < J Pr(fl) I" Hence, every subset o f  P~(fl) is in 

M~./¢* = /c because/~ < 7, and as is well known fl < 7*. 

• This paper is a part of the author's Ph.D. Thesis prepared at the Hebrew University of 
Jerusalem under the supervision of Professor Azriel Levy, for whose help and encouragement 
the author is greatly indebted. 
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V ~ ~ is a-supercompact for all a < y. Hence, because x * =  x Mu ~ ~ is 

~-supercompact for all a < y*. Since fl < 7" we have M, ~ x is fl-supercompact. 

By definition of  fl-supercompactness we get M, ~ there is a normal ultra- 

filter U' over P~(fi). We have already mentioned that P(P~(fl)) ~ M , ,  hence U'  is 

a normal ultrafilter over P~(fl) also in V. 

LEMMA 2. Let j be elementary embedding of (R(ct),e) into (R(7) ,e)  where 

< ~ and a and y are limit ordinals. I f j  is not the identity on R(c 0 then, the 

f irst  ordinal rc < a moved by j is 6-supercompact for  all ~c < 6 < ~. 

PROOF. If  j is not the identity, it must move some ordinal, (since if j(2) = 2 

for every 2 < a then the rank of j (x)  equals the rank of  x for every x ~R(~), 

and we prove by induction on the rank of x that j (x)  = x for every x ~ R(~)) 

let ~ be the first ordinal moved by j.  Let p = ~ n j ( ~ ) .  We shall see that • is 

6-supercompact for all 6 < p. 

For  a cardinal 6 < p define a normal ultrafilter U over P~(6) by: 

A E U ~ {j(i) li < 5} ~j(A). 

( j(A) is always defined because/ '(P~(6)) ~ R(a), ct being a limit ordinal). 

Note  that 6 < j (~) ;  hence, ] {j(i) [ i < 6) I = fi < J(~) which means 

{ j ( i ) ] i<  6} ~Ps(~)(j(6)). It  can be easily verified that U is indeed a normal 

ultrafilter over P~(6). 

Let us start iterating the application o f j  to ~. Of course, we can do it as long 

as j , - l ( ~ )  is still in R(a). We shall use an argument of Kunen [1] to prove that  

j"(~) is undefined for some n < co, since jn-i(K) => a, or supn<oj"(~c) = a. 

Suppose j"(~) is defined for all n < co. It  means j"0c) < a. Let/~ = supn<,~j"(~). 

And assume # < a. 

We shall now prove J(/0 = /~. Denote B = {jn0c)]n < co}, then j (B 

= {j"+x(~c)[ n < co}. Hence, j(/~) = supj(B) -- supB = /~. 

We get now a contradiction by using the following theorem of Erd6s : There 

is a function F from P'~(/~), which is the set of all subsets of/~ of cardinality w, 

such that for any subset A of/~, of cardinality/z F[P°'(A)] =# .  F ~ R(ct) because 

# < a and a is a limit ordinal. 

Let  A = {j( t / ) l t /< #}. Clearly, A ~_/,. R(a) ~ F is a function from P~(/~) 

to # such that for any subset B o f / ,  of  cardinality/~, F [W(B) ]  = / t .  Since j is an 

elementary embedding and J(/0 = #, R(~) ~ j (F)  is a function from P~(/z) to /, 

such that for any subset B of / s  of cardinality/~ F[P°'(B)] = kt. Hence, 
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j(F)[P°'(A)] = # 

which implies 

Let  t be a subset 

t' = {fl ]j(fi) e t}. 

3t[t e P'°(A) and j(F)(t)  = ~]. 

of  A = {j(t/) I q < #} such tha t  j ( F ) ( t )  = x and let 

I t  is evident tha t  t = j ( t ' ) ;  so, j (F)( j( t ' ) )  -- ~:. Tha t  is, j (F(t ' ))  = to; but  ~c, 

being the first ordinal  moved  by j ,  is no t  in the image of  j ,  which is a cont ra-  

diction. 
Let  no be the biggest na tu ra l  number  such tha t  j,o(~:) is defined. We shall now 

show by induct ion on i tha t  ~c is 5-supercompact  for  a l l5  < ji(tc) c3 c~ 1 _< i -< no. 

We have a l ready proved  it for  i = 1. 

Suppose we know already tha t  tc is 5-supercompact  for  all  ~ < j*(~:) C3 a and 

i + 1 < no (which means  ji(rc) < c~). Le t  x = j~(t¢). R(c 0 ~ ~c is 6-supercompact  

for  all  5 < x, because being 6-supercompact  relativizes to R(c 0. 

Since j is an e lementa ry  embedding,  we have 

1) R(?) ~ j(tc) is 6-supercompact  for  all  fi < j (x) .  We deal in the case i + 1 < no, 

so 1 < no and j(~c) n e = j(~:); thus,  we know already tha t  

2) R(V) ~ x is 6-supercompact  for  al l  ~ < j(K). 

Combin ing  (1) and (2) we get, by L e m m a  1, 

R(? ) ~ ~: is 5 - supercompac t  for  all  6 < j~+a(tc). 

In  any case, whether  no = 1 or not ,  we get tha t  

rc is 6-supercompact  for  all 6 < e n j ' ° ( x ) .  

But  j"°(tc) > a. Otherwise,  j '°(r:) would  be defined. 

Therefore,  rc is 5-supercompact  for  all  6 < a which was to be proved.  

Tha t  finished the case where j"(K) were undefined for  some n. In the o ther  case 

sup,<,oj"(~:) = ~ and by the same inductive p r o o f  we can show tha t  t¢ is f - super-  

compac t  for  all  6 < j"(x).  Thus  K is supercompact  for  6 < ~. 

Note. In  the original p r o o f  we assumed cf(~) > o9 (where cf (a)  is the con- 

finality index of  ~). The t rea tment  of  the case cf(c 0 = co was given by the referee. 

LEMMA 3. I f  tO is a supercompact cardinal then for  every fl > x, there is an 

< ~ such that R(e) can be elementary embedded in R(fl). 

PROOF. Let  7 = I R(fl) [ ; let U be a n o r m a l  ultrafi l ter over  PK(Y); let M .  and * be 

as in the p r o o f  of  L e m m a  1. 
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R(fi) ~ M,, because it is hereditarily of cardinality __< V. * restricted to R(fi) is 

a subset of M, of cardinality V so * [ R(fl) ~ Mu. * [ R(fl) is clearly an elementary 

embedding of (R(fi), 5) to (RM"(fl*), 5). We get (using, of course, RMu(fl) = R(fi)) 

M,, ~ there is elementary embedding of (R(fl), 5) into (R(fl*), e). 

Since fl < 7 < ~* and * is elementary we have 

V ~ there is ~ < ic such that (R(c0, 5) can be elementary embedded in (R(fi), 5). 

PROOF OF THEOREM 1. a) I f  there exists a supercompact cardinal ~c, by 

Lemma 3 we can take Po = K. 

b) Assume the existence of Po satisfying the condition of the Theorem. 

By the usual reflection principle (see [3]) we have fl > Po, cf(fl) = Nt and if 

~c < fl and tc is &supercompact for all ~ < fl then ~c is &supercompact for all fi, 

i.e., ~c is supercompact. 

By our assumption, there is an ~/< fl and a function j such tha t j  is an elementary 

embedding of  (R(t/), 5) into (R(fl + 2), 5). It is clear that ~ = ~ + 2 for some 

ordinal ~ and j (a  + 1) = fl + 1, because c~ + 1, fl + 1 are defined in (R(c~ + 2), 5) 

and (R(fl + 2), 5) respectively, by the same formula. 

For  the same reason j(a) = ft. e l ( a )  = N1 because: 

R(fl + 2) ~ there is a function from N 1 to fl, unbounded in ft. (It is clear that 

j ( s ~ )  = ~1) .  

is not the first ordinal moved by j ,  since if that were the case, then c~ would be 

measurable by means of the ultrafilter U = {A[A c ~z,c~ ~j(A)}, contradicting 

cf(ct) = N1. Hence, j is not the identity on R(c0, but it is an elementary embedding 

of (R(cQ, 5) into (R(fl), 5). 
By Lemma 2 there is ~ < c~ s.t. tc is &supercompact for all 8 < ~. Therefore, 

We get 

R(a) ~ ~: is &supercompact for all 8 < a. 

R(fl) ~ j(~c) is ~-supercompact for all ~ < j(e) = fl, 

but by definition of fl j(~:)'is a supercompact cardinal. 

Now we prove that the first Po satisfying the condition of the theorem is the 

first supercompact cardinal. Let x be the first supercompact cardinal. By Lemma 3 

#o -<- ~:. Suppose Po < ~. 

R(~:) V for all fl __> Po there is c~ < fl such that (R(~), 5) can be elementary 

embedded in (R(fl),5). (R(~),5) is a model of set theory, so we can repeat our 



Vol. 10, 1 9 7 1  SUPERCOMPACT CARDINALS 151 

argument and get R(~:) ~. There is a supercompact cardinal too, but too < x and 

~:0 is cS-supercompact for all 6 < ~:. By Lemma 1 ~:o is supercompact, contra- 

dicting the minimality of ~¢. Q.E.D. 

Theorem 1 is now used in order to characterize supercompactness in terms of 

a Skolem-LSwenheim property for higher order logic. 

THEOREM 2. The f irst  supercompact cardinal is the f irst  Po such that for 

every structure A = (M,  Rx , . . . ,R , )  [M] >= #o and every lI~-sentence ¢, such 

that A ~ ~p, there exists a substructure A ' =  ( M ' , R I l M ' . . . , R ,  I M ' )  of A 

with [M'[  < I MI and A'  P ¢. 

LEMMA 4. I f  ~C iS supercompact, A = (M,  RI , . . . ,Rn)  a structure with 

iMl  > ~c, and ¢ any finite order statement which holds in A, then there exists 

a substructure A ' =  ( M ' , R I I M ' , . . . , R , [ M ' )  of  A with [M'[  < K  and A ' P  ¢. 

PROOF. The proof  is much like the proof  of Lemma 3. 

Let o~ be of order m. [M[ = V. Denote 6 = I R(7 + m)[.  We can assume 

without loss of generality that M = 7. Pick some n.u.f, on P~(6) and build M u 

and *. A = (7,R1, . . . ,R , )  is hereditarily of cardinality = 7. Therefore, A e M  u. 

* restricted to 7 clearly maps A on a substructure of A*. 

M u g "A ~ ¢ "  because ¢ is of order n and the power set of A of order m 

i s i n M , ( 6  = IR(y+m)[) [A*] M"= 7" > /¢* > 7" Therefore, M, ~. There is  a 

substructure of A* of cardinality less than ~c* such that ¢ holds in it. Hence, 

V ~. There is a substructure of A of cardinality < tc such that ¢ holds in it. 

PROOF or  THEOREM 2. We prove that any Po satisfying the condition of the 

present Theorem satisfies also the condition of Theorem 1; which, by Theorem 1 

and Lemma 4, establishes the present Theorem. 

Let ¢(x, y) be the set theoretical statement, asserting that x is an ordinal and y 

is R(x). We can form ~b(x, y) such that it relativizes to any (R(c0, e>. 

A transitive structure A = (M,  e) is isomorphic to R(c 0 iff 

A ~ Vx(On(x) ~ 3y¢(x,y))  (denote this statement by ~ ;  On(x) means that x is 

an ordinal) and the following H~ statement holds in A: 

VxVX[Vy[y ~ X ~ y ~ x] ~ 3zVt[t ~ X ~ t ~ z]] (Z) 

(Note the difference between c which is the relation in the model and ~ which is 

the second order logic E.) 

Let 0 be a first order statement which is the conjunction of the pairing axiom, 

infinity axiom, and extentionality. There is a first order statement ~2 such that if 



152 M. MAGIDOR Israel J. Math., 

( M , e )  ~ 0 then ( M , e , T )  ~ ~.,~--~ T is a truth definition for (M,5 )  (where T 

is a unary relation). 

Let fl > #0, where P0 is defined by the condition of the Theorem. Let 

A = (R(fl), e, T )  where T is a truth definition for (R(fl), 5). Clearly, 

A ~ A x A O A  E 

which is equivalent to some II~ statement ~. 

By assumption on Po, there is a substructure A ' =  (M, elM, T I M  ) 

I MI< I R(B)I such that a '  ~ ~b. 

(M, 5 [ M)  is an elementary submodel of (R(fi), e) because r I M is still a truth 

definition for (M,  e lm  ). But (M , e ]M)  ~WA)~ and (M, e lM)  is isomorphic 

to some transitive structure. Hence, that transitive structure is of  the form 

(R(a), 5) where a < ft. So (R(a), 5) can be elementary embedded in R(fl). Q.E.D. 

We shall now show that a certain axiom schema is a very strong axiom of 

infinity, namely, it implies the existence of many supercompact cardinals. The 

axiom schema is: 

(V) If  ¢(x) defines a proper class of structures in the same language, then there 

exist two members of  the class such that one can be elementary embedded in 

the second. 

This axiom schema is usually called Vopenka's principle. I t  was considered 

independently also by Keisler. 

DEFINITION. ~C is called a-extendible if a > t¢ and there is a fl > a and an ele- 

mentary embedding j of (R(a), e) into (R(fl), 5) such that j(rc) > x and x is the 

first ordinal moved by j. 

is extendible if it is a extendible for all a > x.* 

It is clear that if x is a extendible it is fl extendible for all ~: < fl =< a. 

By Lemma 2 if x is extendible it is supercompact. 

LEMMA 5. Let tc be a supercompact cardinal a < fl < tc and let a be fl 

extendible, then a is fl extendible in R(tc). (i.e. with R k taken to be the uni- 

verse). 

PROOF. By the definition of fl extendibility there is 7 and an elementary em- 

bedding j of (R(fl), e) into (R(y), e) such that j(a) > a and a is the first ordinal 

* The author does not know who defined the notion of extendible cardinal. He found 
this notion in the referee report and all the results concerning extendible cardinals were added 
in the revised version. 
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moved by j.  If  7 < x, then our claim indeed holds. If  7 >= x then by a proof 

completely analogous to Lemmata 3 and 4 we can prove the existence of 7' < 

and j such that  j is elementary embedding of (R(fl), 5)into (R(7'), 5) with j(c 0 > 

and e the first ordinal moved. 

The proof is by taking a normal ultrafilter u on and taking the 

transitive isomorph of VI"'~(IR(~')D/u, M,, and the canonical elementary embedding * 

of V into M~. R(7 ) ~ M, and j ~ M u but r:* > I R(7 ) ] > 7 and a* = ~ so in M,, 
there is elementary embedding of (R(c~*), e) into (R(7), e) for some ~ < x* such 

thatj(c~*) > a* and ~* the first ordinal moved. 

By * being elementary embedding we get the result. 

Let V' be the following axiom schema: (V') if the formula z(x) defines a closed 

unbounded class of ordinals, then there is extendible cardinal in this class. (i.e. " the 

class of all extendible cardinals is "stationary").  

THEOREM 3. (V) implies (V') but it is not equivalent to it. 

Note. When this paper was submitted for publication (V') was like the 

present (V') except that it had "supercompact" in place of "extendible". 

The referee noted that the proof could be adapted to the present stronger version 

of V'. He also informed methat  the fact that V' implies the existence of an extend- 

ible cardinal was noted by several people independently. 

PROOF. Let z(x) define a closed unbounded class of ordinals and F be the 

normal function enumerating this class. Let C be the class of all ordinals ct which 

satisfy the following (1)-(4) 

1) ~ is closed under F. 

2) If  fl < e and there is 7 > fl such that B is not 7 extendible, then there is such 

7 < e .  

3) If  fl, fi < c~ and fl is fi extendible then there is fi' < e and an elementary 

embedding j of (R(~5), e) into (R(~'), e) such that j(fl) > fl and fl is the first ordinal 

moved by j. 

4) cf(~) = ~1. 

C contains arbitrary large ordinals by the reflections principles [3]. 

Let us consider C'  = {(R(/? + 2), e, F n fl) I fl ~ C} which is a proper class 

of structures in the same languages. By (V) there are e, fl, c~ <fl and a 

function j such that j is an elementary embedding of (R(c~ + 2),e, Fl~) into 

(R(fl + 2), e, F [ fl). Let ~: be the least ordinal moved by j ;  there is such since 
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j(~ + 1) = /3 + 1. As in the proof  of Theorem 1, ~: < ~ and x is 6-extendible for 

all K < ~ < c~. By definition of C, t¢ is extendible. We shall also prove that K 

is a fixed point of F. Suppose that this is not the case. Let p be the last ordinal 

< ~: in the image of F, if there is such an ordinal and 0 otherwise. F is normal. 

j(p) = p because p < x. 

(R(~ + 2), e, F [ ~) h/~ is the last ordinal < ~: in the image of F, if there is 

such an ordinal and 0 otherwise. Hence, (R(/3 + 2),e,F[/~)~ ~ is the last 

ordinal < j ( x )  in the image of  F if there is such an ordinal and 0 otherwise. 

Let no be the last such thatj"°(x) is defined. Exactly as in the proof  of Lemma 2, 

we can prove by induction for i < no. 

(R(e), e, F ~ e )  h # is the last ordinal < ji(t  0 (3 o~ in the image of  F if there 

is such an ordinal and 0 otherwise. But j"°(~:) > c~. Therefore, j"°(~:) n o~ = c~. 

(R(e  + 2), e, F ] e )  ~ It is the last ordinal < e in the image of F. 

Hence, the image of F is bounded in e, but F is properly increasing and ~ e C 

implies that ~ is closed under F - -  a contradiction ! Thus 1< is a fixed point of F. 

To prove that (V') does not imply (V), it is enough to show that (R(~:), e) 

(~: as before, does not matter who F is) is a model of Z F C  + (V') .  Define a normal 

ultrafilter U on x by 

A E U ~ I< ~j (A) .  

The set A - - { 5 [ 5  < lc, 5 is y-extendible for all y < 1<} is in U for 

j ( A )  = {~ [ 5 < j(K), 5 is v-extendible for all 7 < J0c)} • 

lc ~ j (A )  because Ic is extendible. ' 

By Lemma 5 being ~ extendible for 5 < lc relativizes to R0c ). 

Because U is normal, any normal function on 1< has got a fixed point in A which 

implies (R(~:), s) is a model o f Z F C  + (V') (~c is inaccessible). Q.E.D. 

Actually, we can prove (by modifications of the arguments in Theorem 3) 

that (K) is equivalent to the following schema: where by "R(a) reflects V with 

respect to z"  we mean " for  all x E R(a) R(a) h z(x) ~ V h z(x).  

(S) There exists unbounded number of fl's such that (R(fl) ,e) reflects V 

with respect to z(x)  and there is I< < fl, supercompact and a n.u.f, over P,~(/3) s.t. 

M,  h fl reflects V with respect to z. 

We now prove that the existence of extendible cardinal is equivalent to a certain 

compactness theorem for second (or finite) order language. 

DEFINITION. Logic is called K compact iff for every set of formulae A in this 

logic, if every subset of A of cardinality < ~ has a model, then A has a model. 
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The L~ logic is like the n-th order logic, except that we allow conjunction and 

disjunctions of less than K formulae. The usual second order logic is of course L~. 

THEOREM 4. t¢ is extendible iff L~ is lc compact, t¢ is the first extendible iff 

it is the first ~ such that second order logic is c~ compact. 

PROOF. 

LEMMA 6. I f  ~C is extendible then L~ (n < co) is ~c compact. 

PROOF. Let A be a set of formulae in E] such that for any subset of A of  car- 

dinality < tc there is a model. 

Let fl be a sufficiently large cardinal such that: 

a) ~c<fl. 

b) A ~ R(fi). 

c) If  c is a set of  formulae in L~, c ~ R(fl) and c has a model, then c has a model 

in R(fl). 

d) cf(fl) = N1. 

e) [R(fl)[ = ft. 

By definition of extendibility there is c~ and elementary embedding j of R(fl) 

into R(~) such that jffc) > ~: and ~: is the first ordinal moved by j.  

Let n be the last n such that j"(x) is defined. There is such n as shown by the 

proof of Lemma 2 in the case cfffz) > o9. 

We prove by induction on i < n that any subset of A of cardinality <ji(~c) 

has a model. For i = 0 that is our assumption about A. Assume it is true for i 

and i + 1 < n. Clearly, ji(~:) < fi, thus by definition of fl, R(fl) ~. Any subset of 

A of  cardinality < ji(l',;) has a model. Thus, R(c 0 ~. Any subset of j (A) of  car- 

dinality < ji+ 1(~:) has a model. 

Let B be a subset of A of cardinality <ji+l(rc). Let B' = ¢ oN}. B' is 

clearly a subset of j (A)  of cardinality < jvvl(~:). B' ~R(c0; thus B' has a model. 

Since ~ is a limit ordinal, the model of B' in R(c 0 is a model in the universe. 

Any formula of  B is in L~ and thus of  length < K. It  follows that if B' has a model 

then B has a model too - -  because the formulae of B' are like those of B except 

perhaps of renaming the predicates appearing in them. Thus we proved our 

claim. I AI < fl ___< Thus, A has a model. (1 A] < fl because [R(fl)[ = fl). 

Now we prove the other direction of the theorem. 

Let ~: < ft. Take a constant c~ for each x ~R(fl), an additional constant c, 

a binary predicate symbol E (to be interpreted as e) and a unary predicate symbol 
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K (to be interpreted as ~). Let • be the II~ statement asserting that E is a well 

founded relation. Let CD be the complete diagram of (R(fl), ~, •) in first order 

language (that is, all formulae in the language of E, K and {G, I x ~ R(fl)) true in 

(R(fl), ~, x)  if  we realize c x by x). 

Define: 

A = CD[,_J{Z,W,@}U{c > c~,[~ < x } U { K ( c ) } U { x E c ~  V x = caleb< ~:}, 

where Z and ~ are the statements defined in the proof  of  Theorem 2. 

Let A'  be a subset of A of cardinality < to. Without loss of generality, assume 

{Z,q j, ~, K(c)} _ A'. Let a be sup {ill Cp appears in some formula in A', fl < to}. 

< x since [ A'] < x and x is inaccessible, since it is strongly compact (i.e., 

L~ is tc compact). We shall now see that La = (R(fl), e, t<, {x}x ER(a), ~) is a model 

of A'. (We take a as the interpretation of c and x as interpretation of cx.) 

Se is obviously a model of CD. As noted in the proof  of Theorem 2, £z is a 

model of W and X. It is trivial that 5e satisfies K(c) and ~, and 

{xl~c~ ~ v x = cpI~, < K}. 

But by definition of ~, A ' t~  {c > c, Is < ~c} holds. Thus, any subset of  A of 

cardinality < ~c has a model. By the hypothesis of the Theorem A has a model. 

Since it is a model of Z,q ~, • it is isomorphic to some (R(~), e, p, {d~}~ ~R(a), d) .  

(See the note about Z, ~2 in the proof  of  Theorem 2.) 

Clearly, d~ = p, d, = c~ for ~ < ~c, d e p. Thus p > d > d~ ; thus, p > ~c. 

The map x --+ d~ is clearly an elementary embedding of  (R(/~), e) into (R(c0, e) 

and x is the first ordinal moved by this map. 

THE PROOF OF THE SECOND PART OF THEOREM 4. Let x be the first ordinal 

such that second order logic (L~) is ~: compact. We shall prove that there is an 

extendible cardinal < ~: which is all we have to prove (since the other direction 

follows trivially from the first part  of  the Theorem). 

Let ]~ be an ordinal such that:  

(a) f l > ~ .  
(b) I f  a < fl and there is 7 > a such that o~ is not 7 extendible, then there is 

such ~ < ft. 
Again pick a constant c~ for each x e R(/3), an additional constant c and unary 

and binary predicate symbols E and K. 
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Define A = CD U {Z,V,q)} k) {c > cam 0~ < ~} u {K(c)}, where Z, uF,¢,CD are 

as in the proof of the first part of the Theorem. The same proof gives that there 

is 0~ and an elementary embedding j of  (R(fl), e) into (R(c0, e) such that j(~c)> ~c. 

However, we do not know now that K is the first ordinal moved by j. 

Let 6 be the first ordinal moved by j. 6 is fl extendible by definition, and thus 

it is ~ extendible for each y < ft. Then, by definition of  fl, 6 is extendible. This 

proves the existence of an extendible cardinal < ~c. 
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