ON THE ROLE OF SUPERCOMPACT AND EXTENDIBLE
CARDINALS IN LOGIC

BY
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ABSTRACT

It is proved that the existence of supercompact cardinal is equivalent to a
certain Skolem-Léwenheim Theorem for second order logic, whereas the
existence of extendible cardinal is equivalent to a certain compactness theorem
for that logic. It is also proved that a certain axiom schema related to model
theory implies the existence of many extendible cardinals.

We assume that the reader is familiar with the notions of a supercompact and
a B-supercompact cardinal and a normal ultrafilter over Py(f) (n.u.f.), defined in
[4] (see also [2]), as well as with the usual notation of Set Theory.

THEOREM 1. There exists a supercompact cardinal iff there is a uq such
that for all R(B), B = uo thereis ana < ff such that (R(®),e) can be elementarily
embedded in {R(f), ).

The least such p, is the first supercompact cardinal.

We begin the proof of the Theorem by a series of Lemmata.

LemMA 1. Let B =y > k; let k be a-supercompact for all « <y and let y

be B-supercompact; then x is f-supercompact.

Proor. We form the ultrapower ¥®*®JU where U is a normal ultrafilter
over P(f). Let M, be the transitive isomorph of V**®/U and let * be the canonical
elementary embedding of V into M,. It is well known (see [4], and [2]) that
any set which is hereditarily of cardinality < |P,(8)|is a member of M,, as well
as any subset of M, of cardinality < IPY(,B) I Hence, every subset of P(f) is in
M,. x* = K because x <y, and as is well known f§ < y*,

* This paper is a part of the author’s Ph.D. Thesis prepared at the Hebrew University of
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the author is greatly indebted.
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V Ex is a-supercompact for all « <7y. Hence, because k* =x M, Fk is
a-supercompact for all & < y*. Since f < y* we have M, F k is B-supercompact.

By definition of B-supercompactness we get M, k there is a normal ultra-
filter U’ over P.(B). We have already mentioned that P(P(f))e M, hence U’ is
a normal ultrafilter over P (f) also in V.

LEMMA 2. Let j be elementary embedding of (R(2),e) into (R(y),&) where
« <7 and « and y are limit ordinals. If j is not the identity on R(a) then, the
first ordinal k < « moved by j is é-supercompact for all x £ 6 < .

Proor. If j is not the identity, it must move some ordinal, (since if j(1) = 4
for every A <« then the rank of j(x) equals the rank of x for every x € R(x),
and we prove by induction on the rank of x that j(x) = x for every x € R(x))
let x be the first ordinal moved by j. Let p = a Nj(x). We shall see that x is
S-supercompact for all § < p.

For a cardinal 6 < p define a normal ultrafilter U over P,(J) by:

AeUe{j(i)]i<s}ej(A).

(j(A) is always defined because P(P,(J)) € R(x), « being a limit ordinal).

Note that 6 <j(x); hence, | {j(i)|i < 6} | = 6 < j(x) which means
{ j(i)li < 8} €Pj(j(6)). It can be easily verified that U is indeed a normal
ultrafilter over P (5).

Let us start iterating the application of j to k. Of course, we can do it as long
as j"~(x) is still in R(e). We shall use an argument of Kunen [1] to prove that
j*(x) is undefined for some n < w, since P K) = a, Or SUP,<q)"(K) = a.

Suppose j"(x) is defined for all n < w. It means j"(x) < a. Let g = sup, ., j"(x).
And assume u < a.

We shall now prove j(u) = u. Denote B = {j"(rc)l n < w}, then j(B
= {j**!(x)| n < w}. Hence, j(1) = supj(B) = sup B = p.

We get now a contradiction by using the following theorem of Erdds : There
is a function F from P“(y), which is the set of all subsets of u of cardinality w,
such that for any subset 4 of p, of cardinality p  F[P®(4)]=pu. F € R(x) because
p < o and « is a limit ordinal.

Iet A= {j(r))ln < p}. Clearly, 4 = p. R(e) FF is a function from P®(y)
to  such that for any subset B of p of cardinality u, F[P®(B)] = p. Since j is an
elementary embedding and j(u) = u, R(y) F j(F) is a function from P°(y) to u
such that for any subset B of p of cardinality u F[P®(B)] = u. Hence,



Vol. 10, 1971 SUPERCOMPACT CARDINALS 149

JIRP(A)] = 1
which implies
At[t € P(A) and j(F)(1) = x].

Let t be a subset of 4 = {j(i) | n < p} such that j(F)(f) = x and let
¢ = BliBye.

It is evident that t = j(¢'); so, j(F)(j(t")) = x. That is, j(F(t")) = k; but &,
being the first ordinal moved by j, is not in the image of j, which is a contra-

diction.
Let n, be the biggest natural number such that j"°(x) is defined. We shall now

show by induction on i that « is d-supercompact for alld < )y na 1 2L n,.
We have already proved it for i = 1.

Suppose we know already that «x is d-supercompact for all é < j*) N and
i +1 < n, (which means ji(x) < «). Let x = ji(x). R(x) F x is S-supercompact
for all 8 < x, because being §-supercompact relativizes to R(o).

Since j is an elementary embedding, we have

1) R(y) k j(x) is d-supercompact for all & < j(x). We deal in the case i + 1 < n,,
so0 1 < ng and j(k) N a = j(x); thus, we know already that

2) R(p) F k is d-supercompact for all § < j(x).

Combining (1) and (2) we get, by Lemma 1,

R(y) F « is d-supercompact for all 6 <j*Y(x).
In any case, whether ny = 1 or not, we get that
% is d-supercompact for all & < « N j"(k).

But j"(x) = «. Otherwise, j"(x) would be defined.

Therefore, k is J-supercompact for all § < a which was to be proved.

That finished the case where j"(x) were undefined for some n. In the other case
SUP, <,j"(x) = « and by the same inductive proof we can show that x is é-super-
compact for all § < j"(x). Thus « is supercompact for § < a.

Note. In the original proof we assumed cf(x) > @ (where cf(x) is the con-
finality index of o). The treatment of the case cf(x) = w was given by the referee.

LemMA 3. If k is a supercompact cardinal then for every B 2 x, there is an
o < k such that R(a) can be elementary embedded in R(f).

Proor. Lety = IR(B) I ; et U be a normal ultrafilter over P, (y); let M, and * be
as in the proof of Lemma 1.
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R(B) € M, because it is hereditarily of cardinality = y. * restricted to R(f) is
a subset of M, of cardinality y so * I R(peM,. * IR(ﬁ) is clearly an elementary
embedding of (R(B), &) to (RM“(B*),e). We get (using, of course, R¥*(B) = R())

M, E there is elementary embedding of (R(f),¢e) into {R(f*),e).
Since B £ y < k* and * is elementary we have
V F there is a < i such that (R(x), &> can be elementary embedded in (R(f), ).

Proor oF THEOREM 1. a) If there exists a supercompact cardinal x, by
Lemma 3 we can take yy = k.

b) Assume the existence of y, satisfying the condition of the Theorem.

By the usual reflection principle (see [3]) we have f = po, cf(f) = N, and if
x < B and x is é-supercompact for all 6 < f then « is d-supercompact for all d,
i.e., x is supercompact.

By our assumption, there is an # < f and a function j such that j is an elementary
embedding of (R(n),&) into {(R(B + 2),e). It is clear that n = « + 2 for some
ordinal & and j(x + 1) = B + 1, because a + 1, # + 1 are defined in <R(x + 2),¢&)
and (R(B + 2),¢&) respectively, by the same formula.

For the same reason j(o) = . Ci(a) = N, because:

R(B + 2) k there is a function from N, to B, unbounded in f. (It is clear that
J(¥y) = Ny).

« is not the first ordinal moved by j, since if that were the case, then « would be
measurable by means of the ultrafilter U = {AIA < a,a€j(4)}, contradicting
cf(e) = N, . Hence, j is not the identity on R(«), butit is an elementary embedding
of (R(),&> into (R(f), &>.

By Lemma 2 there is k¥ < « s.t. k is -supercompact for all 6 < «. Therefore,
R(®) F & is §-supercompact for all § < a.
We get
R(B) E j(x) is é-supercompact for all § < j(«) = B,
but by definition of § j(x)is a supercompact cardinal.
Now we prove that the first u, satisfying the condition of the theorem is the
first supercompact cardinal. Let x be the first supercompact cardinal. By Lemma 3
o < x. Suppose 1 < K.

R(x) E for all B = pg there is a < f such that {(R(«),e) can be elementary
embedded in <(R(f),&). (R(x),e) is a model of set theory, so we can repeat our
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argument and get R(x) k. There is a supercompact cardinal k,, but xy < x and
Ko is d-supercompact for all § < x. By Lemma 1 k, is supercompact, contra-
dicting the minimality of x. Q.E.D.

Theorem 1 is now used in order to characterize supercompactness in terms of
a Skolem-Loéwenheim property for higher order logic.

THEOREM 2. The first supercompact cardinal is the first py such that for
every structure A = (M,R,,---,R,» ,Ml > pp and every Tli-sentence ¢, such
that A E ¢, there exists a substructure A’ = (M',RllM’--',R,,|M’> of A
with |M'| < |M|and A" F ¢.

LemMA 4. If x is supercompact, A = {M,Ry,--,R,> a structure with

IMl = k, and ¢ any finite order statement which holds in A, then there exists
a substructure A’ = <M’,R1|M',~--,R,,|M’) of A with |M'| <k and A'F ¢.

ProoOF. The proof is much like the proof of Lemma 3.

Let o be of order m. |M| = y. Denote 6 = lR(y + m)|. We can assume
without loss of generality that M = y. Pick some n.u.f. on P(d) and build M,
and *. A = {y,Ry,-*+, R, is hereditarily of cardinality < y. Therefore, AeM,.
* restricted to y clearly maps A on a substructure of A*.

M, E “AE ¢ because ¢ is of order n and the power set of A of order m
isin M, (8 = |R(y +m)|) | 4*|M* = y* Z «* > y. Therefore, M, k. There is a
substructure of A* of cardinality less than x* such that ¢ holds in it. Hence,
V E. There is a substructure of 4 of cardinality < x such that ¢ holds in it.

ProoOF OF THEOREM 2. We prove that any u, satisfying the condition of the
present Theorem satisfies also the condition of Theorem 1; which, by Theorem 1
and Lemma 4, establishes the present Theorem.

Let ¢(x, y) be the set theoretical statement, asserting that x is an ordinal and y
is R(x). We can form ¢(x, y) such that it relativizes to any {R(«), ).

A transitive structure A4 = (M, &) is isomorphic to R(«) iff
A F Vx(On(x) - 3yd(x,y)) (denote this statement by ¥; On(x) means that x is
an ordinal) and the following I1] statement holds in A4:

VxVX[Vy[yeX » yex]» zVitEX o tez]] (%)
(Note the difference between ¢ which is the relation in the model and € which is
the second order logic €.)
Let 0 be a first order statement which is the conjunction of the pairing axiom,
infinity axiom, and extentionality. There is a first order statement X such that if
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{M,e)y k@ then {M,e, Ty F X T is a truth definition for (M,e) (where T
is a unary relation).

Let § = py, where p, is defined by the condition of the Theorem. Let
A = (R(B),e, Ty where T is a truth definition for {R(f),¢e). Clearly,

AFPAYANOAN X

which is equivalent to some II; statement ®.

By assumption on yo, there is a substructure A4’ = (M,3|M, T | M
| M| < |R(B)| such that 4" F ©.

{M,¢ | M is an elementary submodel of (R(f),¢&)> because T | M is still a truth
definition for (M, s|M>, But (M,s]M) EWA x and (M,s|M> is isomorphic
to some transitive structure. Hence, that transitive structure is of the form
{R(w), &) where a« < f. So (R(%), &) can be elementary embedded in R(f). Q.E.D.

We shall now show that a certain axiom schema is a very strong axiom of
infinity, namely, it implies the existence of many supercompact cardinals. The
axiom schema is:

(V) If ¢(x) defines a proper class of structures in the same language, then there
exist two members of the class such that one can be elementary embedded in
the second.

This axiom schema is usually called Vopenka’s principle. It was considered
independently also by Keisler.

DErFINITION.  k is called a-extendible if o > k and there is a § > « and an ele-
mentary embedding j of (R(«),&> into {R(f),e) such that j(x) >« and x is the
first ordinal moved by j.

Kk is extendible if it is « extendible for all « > x.*

It is clear that if x is « extendible it is § extendible for allk < § < a.

By Lemma 2 if x is extendible it is supercompact.

LemMMA 5. Let x be a supercompact cardinal a <p<x and let o be f
extendible, then o is B extendible in R(x). (i.e. with R, taken to be the uni-

verse).

PrOOF. By the definition of f extendibility there is y and an elementary em-
bedding j of {R(f),&) into (R(y),&) such that j(x) > « and « is the first ordinal

* The author does not know who defined the notion of extendible cardinal. He found
this notion in the referee report and all the results concerning extendible cardinals were added
in the revised version.
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moved by j. If y <k, then our claim indeed holds. If y = % then by a proof
completely analogous to Lemmata 3 and 4 we can prove the existence of y’ < k
and j such that j is elementary embedding of {R(f),e>into {R(y"), ey with j(a) > &
and o the first ordinal moved.

The proof is by taking a normal ultrafilter u on PK(|R(y)l) and taking the
transitive isomorph of V7=URMDy, M, and the canonical elementary embedding *
of Vinto M,. R(y)e M, and j € M, but * > |R(y)| 2 y and «* = as0oin M, k
there is elementary embedding of (R(e*),¢> into (R(y),¢&) for some y < x* such
that j{a*) > o* and a* the first ordinal moved.

By * being elementary embedding we get the result.

Let V' be the following axiom schema: (V') if the formula 7(x) defines a closed
unbounded class of ordinals, then there is extendible cardinal in this class. (i.e. “‘the
class of all extendible cardinals is “‘stationary’”).

THeoREM 3. (V) implies (V') but it is not equivalent to it.

Note. When this paper was submitted for publication (V') was like the
present (V') except that it had ‘‘supercompact” in place of ‘‘extendible”.
The referee noted that the proof could be adapted to the present stronger version
of V’. He also informed me that the fact that V' implies the existence of an extend-
ible cardinal was noted by several people independently.

Proor. Let z(x) define a closed unbounded class of ordinals and F be the
normal function enumerating this class. Let C be the class of all ordinals « which
satisfy the following (1)-(4)

1) «is closed under F.

2) If f < a and there is y > f such that f§ is not y extendible, then there is such
y <a.

3) If §,6 <« and f is & extendible then there is 6’ <o and an elementary
embedding j of {R(J), ¢) into {R(d"), &) such that j(f) > f and B is the first ordinal
moved by j.

4) cf (o) = Ny,

C contains arbitrary large ordinals by the reflections principles [3].

Let us consider C’ = {<R(f + 2),&,F n B)|fcC} which is a proper class
of structures in the same languages. By (V) there are o,f,0a <f and a
function j such that j is an elementary embedding of {(R(« + 2),¢,F la) into
{R(p + 2),a,F| B>. Let « be the least ordinal moved by j; there is such since



154 M. MAGIDOR Israel J. Math.,

jle+ 1) = B+ 1. As in the proof of Theorem 1, k < « and « is J-extendible for
all k £ 8 < a. By definition of C, x is extendible. We shall also prove that x
is a fixed point of F. Suppose that this is not the case. Let u be the last ordinal
< x in the image of F, if there is such an ordinal and 0 otherwise. F is normal.
Jj(i) = p because p < k.

{R(o + 2),£,F|<x> F u is the last ordinal <« in the image of F, if there is
such an ordinal and O otherwise. Hence, (R(f + 2),¢, F I B> Eu is the last
ordinal < j(x) in the image of F if there is such an ordinal and O otherwise.

Let n, be the last such that j*(x) is defined. Exactly as in the proof of Lemma 2,
we can prove by induction for i £ ng.

(R(a),e,F Na) E p is the last ordinal < j'(x) N« in the image of F if there
is such an ordinal and 0 otherwise. But j"(x) = «. Therefore, j*°(x) Na = o.

{R(o + 2),8,Fi o> F uis the last ordinal < o in the image of F.

Hence, the image of F is bounded in o, but F is properly increasing and a € C
implies that « is closed under F — a contradiction! Thus x is a fixed point of F.

To prove that (V') does not imply (V), it is enough to show that {R(x),&)>
(x as before, does not matter who F is) is a model of ZFC + (V). Define a normal
ultrafilter U on x by

AeU e kej(A).

The set 4 = {§|6 <k, 6 is y-extendible for all y < x} is in U for
j(4) = {5|5 < j(k), 8 is y-extendible for all y < j(x)}.

x € j(A) because « is extendible.

By Lemma 5 being § extendible for § < x relativizes to R(x).

Because U is normal, any normal function on x has got a fixed point in 4 which
implies {R(k), &) is a model of ZFC + (V") (x is inaccessible). Q.E.D.

Actually, we can prove (by modifications of the arguments in Theorem 3)
that (K) is equivalent to the following schema: where by “‘R(«) reflects V' with
respect to 17 we mean ““for all x € R(a) R(e) F 1(x) & V k 1(x).

(S) There exists unbounded number of f’s such that (R(f),e) reflects V
with respect to z(x) and there is k < f§, supercompact and a n.u.f. over P (f)s.t.

M, E B reflects V with respect to 7.

We now prove that the existence of extendible cardinal is equivalent to a certain
compactness theorem for second (or finite) order language.

DermvitioN. Logic is called x compact iff for every set of formulae 4 in this
logic, if every subset of A of cardinality < x has a model, then 4 has a model.
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The L] logic is like the n-th order logic, except that we allow conjunction and

disjunctions of less than x formulae. The usual second order logic is of course L 2.

THEOREM 4. « is extendible iff IZ is k compact. x is the first extendible iff
it is the first o such that second order logic is a compact.

PROOF.

LemMa 6. If k is extendible then L; (n < w) is k compact.

Proor. Let A be a set of formulae in L} such that for any subset of 4 of car-
dinality < x there is a model.

Let f be a sufficiently large cardinal such that:

a) k<p.

b) AeR(p).

c) Ifcisasetof formulaein L}, ¢ € R(B) and ¢ has a model, then ¢ has a model
in R(B).

d) cf(f) = N,.

o |RB)| = p.

By definition of extendibility there is o and elementary embedding j of R(f)
into R(x) such that j(x) > x and « is the first ordinal moved by j.

Let n be the last n such that j*(x) is defined. There is such » as shown by the
proof of Lemma 2 in the case c¢f («) > w.

We prove by induction on i £ n that any subset of 4 of cardinality < j(x)
has a model. For i = 0 that is our assumption about A. Assume it is true for i
and i + 1 £ n. Clearly, j'(x) < f, thus by definition of §, R(f) F. Any subset of
A of cardinality < ji(x) has a model. Thus, R() . Any subset of j(A4) of car-
dinality < j** (k) has a model.

Let B be a subset of 4 of cardinality <j'*'(x). Let B’ = {j(¢)|¢ ¢ B}. B’ is
clearly a subset of j(A4) of cardinality < j'**(x). B’ € R(); thus B’ has a model.
Since « is a limit ordinal, the model of B’ in R(«) is a model in the universe.
Any formula of Bis in L and thus of length <x. It follows that if B’ has a model
then B has a model too — because the formulae of B’ are like those of B except
perhaps of renaming the predicates appearing in them. Thus we proved our
claim. | 4| < f £ j"(x). Thus, A has a model. (| 4| < § because |R(B)| = B).

Now we prove the other direction of the theorem.

Let k¥ < f. Take a constant ¢, for each x e R(f), an additional constant c,
a binary predicate symbol E (to be interpreted as €) and a unary predicate symbol
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K (to be interpreted as x). Let @ be the I} statement asserting that E is a well
founded relation. Let CD be the complete diagram of (R(f),¢,x) in first order
language (that is, all formulae in the language of E,K and {cx]x € R(B)} true in
{R(P), ¢, x> if we realize ¢, by x).

Define:

A = cDJ{r®, o} J{c > c.|« < k(K ()} {xEc, — ﬂ\; x = ¢pla< k),

where y and ¥ are the statements defined in the proof of Theorem 2.

Let A’ be a subset of 4 of cardinality < x. Without loss of generality, assume
{x,¥,®,K(c)} = A’. Let o be sup {/3| C; appears in some formula in 4', f < x}.

o < Kk since [A’] < x and x is inaccessible, since it is strongly compact (i.e.,
L}is x compact). We shall now see that & = (R(), &, k, {X}, erepy» %> is @ model
of A’. (We take « as the interpretation of ¢ and x as interpretation of c,.)

& is obviously a model of CD. As noted in the proof of Theorem 2; & is a
model of ¥ and y. It is trivial that £ satisfies K(c¢) and @, and

{xEc, > V x =¢|y < x}.
B<y

But by definition of «, 4’ N {c > ca|a< x} holds. Thus, any subset of 4 of
cardinality < x has a model. By the hypothesis of the Theorem A has a model.
Since it is a model of 3, ¥, ® it is isomorphic to some (R(%),&, p, {d:}x eresy 4
(See the note about y, ¥ in the proof of Theorem 2.)

Clearly, d, = p, d, = a for a < x, dep. Thus p > d > d,; thus, p > k.

The map x — d, is clearly an elementary embedding of (R(p), &) into {R(«),&>
and x is the first ordinal moved by this map.

THE PROOF OF THE SECOND PART OF THEOREM 4. Let x be the first ordinal
such that second order logic (L2) is ¥ compact. We shall prove that there is an
extendible cardinal < x which is all we have to prove (since the other direction
follows trivially from the first part of the Theorem).

Let 8 be an ordinal such that:

(a) B>k

(b) If « < B and there is y > « such that « is not y extendible, then there is
such y < B.

Again pick a constant ¢, for each x € R(B), an additional constant ¢ and unary

and binary predicate symbols E and K.
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Define 4 = CDU {3, ¥,®} U {¢>c, | a <k} U {K(c)}, where y,¥,®,CD are
as in the proof of the first part of the Theorem. The same proof gives that there
is a and an elementary embedding j of (R(f),&) into (R(«), &) such that j(x)>«.
However, we do not know now that « is the first ordinal moved by j.

Let § be the first ordinal moved by j. d is f§ extendible by definition, and thus
it is y extendible for each y < B. Then, by definition of 5, ¢ is extendible. This
proves the existence of an extendible cardinal < x.
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